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S O L U T I O N  O F  T H E  P R O B L E M  O F  O P T I M A L  C U T  I N  A N  E L A S T I C  B E A M  

V. A. K o v t u n e n k o  UDC 539.3 

The Kirchhoff model of an elastic beam with a transverse cut is considered. The nonpenetration 
condition proposed by A. M. Khludnev is formulated at the edges of the cut. The equilibrium 
model of a beam with a restriction on the cut is written in the form of a variational inequality. An 
analytical solution is obtained with the use of the projection operator. The problem of choosing 
optimal cuts is formulated for the criterion of minimum openin 9. Conditions for determining 
the extremum shapes of the beam are obtained and an example of the solution of the problem is 
given. 

Formulations of the  problems of elastic bodies with cuts (cracks) are discussed, for example, in [1-3]. 
In this paper, the nonpenetrat ion condit ion proposed by A. M. Khludnev  [4, 5] is specified at the edges of 
tile cut. The project ion operator is used to obtain an analytical solution of the problem formulated in the 
form of a variational inequality. The problem of choosing optimal cuts  for the criterion of minimum opening 
[3] is posed. To this end, the solution is rewritten in the form of a dependence on a continuous function 
that  is the solution of the problem of a cut-free beam. Conditions for determining the extremum shapes of 
the beam are obtained.  Some approaches to the approximate solution of variational inequalities for problems 
with restrictions are given in [6-8]. Exact  solutions of the variational inequalities and the problems of optimal 
control can be found only in particular cases [9, 10]. 

E q u i l i b r i u m  P r o b l e m  of t h e  B e a m .  Let the middle line of the beam coincide with the segment 
F~0 = (0, 1). There is a transverse cut at the fixed point y (0 < y < 1) of the beam. The beam thickness 
is equal to 2h (h > 0). We search for the function u = (ux,u2) of the  horizontal Ul(X) and vertical u2(x) 
displacements of the points  x of the middle  line of the beam under the  external load f = (f l ,  ]'2) E (L2(~0)) 2 
(Fig. 1). We introduce the notation ~ = ~0\{y}.  We determine the main  Hilbert space 

X = { u E H I ( ~ ) •  u i = u 2 = D u 2 = O  for x = 0 ,  1}. 

Here the boundary conditions correspond to the clamped ends of the  beam and D is the differentiation 
operator. Into X, we introduce the scalar product  (u, v) = (Dul, Dr1} + (D2u2, D2v2) and the corresponding 
norm I[ul[ 2 = (u ,u) ,  where (.,-) denotes the integration over ~20. The  condition that  the edges do not 
interpenetrate has the form [4, 5] 

[ul]/> hl[Du2][, 

where [F] = F(y + O) - F(y - 0) denotes the jump of the function F .  If [F] = 0, we write F(y) instead of 
F(y + O) = F(y - 0). We determine the closed convex set of admissible displacements K = {u e X, [Ul] ~> 
h[[Du2]t} and the functional of the beam energy H(v) = 0.5[[vii 2 - ( f ,  v). The equilibrium problem of the 
beam is to find the min imum of II(v) on the set K 

H(u) = inf H(v) 
vEh" 
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or to solve the equivalent variational inequality 

u E K ,  ( u , v - u ) > . ( f , v - u }  VvEK.  (1) 

One can easily show the uniqueness of the solution (1). 
L e m m a  1. / f  the solution u E (H2(gt) x H4(Ft)) r3 X of the boundary-value problem 

-D2ul = fl, D4u2 = f2 in fl, 

[Dux] = [D2u2] = O, Dau2(y) = O, (Dul (y )  + h- lD2u2(y))([ul]  + h[Du2]) = O, 

(Dul (y )  - h-XO2u2(y))([ua] - h[Du2]) = 0, full >/hl[Du2]l ,  - D u l ( y )  >1 h-l[D2u2(y)l  

exists, it is the unique solution of the variational inequality (1). 
P roof .  Integrating the equation of the boundary-value problem by parts, for arbitrary ~ = (~1, ~2) E X, 

we obtain 

(u,~) - ( f ,~)  = ( - D 2 u l  - f l ,  ~1) + (04u~ - f2,~2) - fOul .  ~]  - [O~u2 �9 D~2] + [D3u2 �9 ~2] 

1 D2u2(y))([~l ] + h[D~2]) - 5 X l (Dul(y) + l ( D u l ( y  ) _ 1  D2u2(y))([~l ] h[D~2]). 
= - 5  ~ 

We set ~ = v - u, where v E K. With allowance for the boundary conditions, we have 

( u , v -  u ) -  If, v - u ) =  ~(Du,(y) + h D2u2(Y)) (full + h[Du2]) 

1 (/Yul(y) + 1 D2u2(y))([v, ] + h[Dv2]) l (Du1(Y) - h'D2u2(y))([uIl - h[Du2]) - 5 "~ +5 

1 (DuI (y )  - ~  ) - 5  ~ DZu2(y) ([vl] - h[Dv2]) ) 0 Vv E K. 

Lemma 1 is proved. 
We now construct an explicit solution of the problem formulated in Lemma 1. To this end, we determine 

the function w E (H2(ft) x H4(ft))  V1 X related to f as follows: 

-D2wl = fl,  D4w2 = f2 in fl, Dwl(y) = D2w2(y) = Daw2(y) = O. 

Given f ,  we find w and calculate the quantities q0 + = [wl]+h[Dw2], ~ -  = [wl]-h[Dw2],  ~+ = [Wl]+h-l[Dw2], 
and ~b- = [Wl] - h-l[Dw2]. We introduce the function a E C~(f t )  (Fig. 2): 

{ ~ / 2 ,  �9 E (0; .~s - 0), 

a ( z )  = ( z  - 1)2/2, x E (y + 0; 1). 

The function a possesses the following properties: 

Da(x)= ~ x, xE(O;y-O) ,  D 2 a ( x ) - l ,  D3a(x) = O, z E fl, 
t x - - l ,  x E ( y + 0 ; 1 ) ,  

[ D a ] = - l ,  a = D a = O  for x = 0 ,  1. 
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We construct  the  function 0 = (01,02), where 0x = a D a  and 02 = ba and a and b are the constants. Obviously, 
0 e (C~(r~))  2 n X .  

T h e o r e m  1. The funct ion  u E (H2(~) x H4(~))  f'] X that is defined by the formula  

where 

u = w + O, 0 = ( a D a ,  ba), 

(0,0) 

([wl], [Dw2l) 

(a, b) = 1 
i + h 2 (~+' h~+) 

1 
1 + h 2 (r -hr  

is the solut ion o f  the variational inequality (1). 

1: 

f o r  ~2 + >10, ~ - > / 0 ,  

f o r  ~b+<O, ~b -<O,  

f o r  ~ + < 0 ,  r  

f o r  r  ~ - < 0 ,  

(2) 

(3) 

P r o o f .  By virtue of the uniqueness of the solution (1), it is sufficient to verify the conditions for Lemma 

- D 2 u l  = - D 2 w i  - D201 = f l  - aD3 a = fl in Q, 

D4u2 = D4w2 + D402 = f2 + bD 4a = f2 in fl, 

[Dut] = [Dwa] +[D0,] = a[D2a] = O, [D2u21 = [D2w21 + [D2021 = b[D2a] = 0, 

D3u2(y)  = D3w2(y)  + D302(y)  = bD3a(y)  = O. 

Since D u l ( y )  = a, D2u2(y)  = b, [u,] = [Wl] - a, and [Du2] = [Dw~.] - b, the last two equalities and two 
inequalities of the boundary-value problem of Lemma 1 take the form 

(a + h - l b ) ( a  + hb - ~+) = O, (a - h - l b ) ( a  - hb - ~p-) = O, 

a + h b - ~ 2  + <~ 0, a - h b - ~ -  <~ 0, a + h - l b < ~  O, a - h - l b < ~  O. 

These condit ions are fulfilled in the following four variants: 

a - hb - ~ -  ~<0; 

a -  h b - ~ y -  = 0 ;  

a - h b -  v -  ~<0; 

a - h b - ~ - = O .  

1) a -t- h - l b  = O, a - h - l b  = 0, 

2) a + h - l b  < O, a - h - l b  < 0, 

3) a + h - l b < O ,  a - h - l b = O ,  

4) a + h - x b = O ,  a - h - % < O ,  

a + h b -  9 + <~ O, 

a + h b -  ~+ = O, 

a + h b -  ~+ = O, 

a + h b -  ~+ <<. O, 

By virtue of the  relations 2~b + = (1 + h -2 )~  + + (1 - h - 2 ) ~  - and 2~ -  = (1 + h-2)cy - + (1 - h -2)~  +, the 
variants can be wri t ten in the form 

1) a = 0 ,  b = 0 ,  ~+~>0,  ~ - ~ > 0 ;  
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2) a = ~ ( c 2  + + c 2 - ) ,  b =  ( ~ + - c 2 - ) ,  c2 + < 0 ,  ~ -  < 0 ;  

1 h ~+ ~+ 
3) a -  l + h  2 ~v+' b -  l + h  2 ' < 0 ,  r  ~>0; 

1 h 

4) a -  l + h 2 ~ -  , b =  1 + h 2 ~ 2  - ,  ~b+~>0, ~ v - < 0 .  

The above-mentioned cases exhaust  all the possible relations between the  quant i t ies  ~+ ,  ~ -  r  and ~b- and 
lead to formula (3) for the  coefficients a and b. (The numbers 1-4 in Fig. 3 refer to the  variants for h < 1.) 
Theorem 1 is proved. 

R e m a r k  1. The  constructed solution u is the projection of the  element  w from X onto K [7]. 
R e m a r k  2 (smoothness of the solution).  Formula (2) and the  propert ies of the  functions w and a 

imply that  if f E Hn( f l )  x Hm(fl), n (m >/ 0), then  u E Hn+2(~) x Hrn+4(Q), and if f E Cn(~ )  x Cm(~), 
then u E Cn+2(Ft) x Cm+4(f~). 

R e m a r k  3. After  the displacement function u of the beam has been found, the other physical 
characteristics of the s ta te  of the beam can be determined from (2), for example:  

- -  the s train e or the stress cr = e = Du: (rl = Dwl + a and cr2 = Dw2 + bDa (~rl is a continuous 
fimction in ['to); 

- -  the potent ia l  energy of the beam II(u) = 0.51lull 2 - '  ( f ,  u) = -0.51lull 2. 
R e m a r k  4. Let f2 = 0; then we - 0 ==* ~+ = ~ -  = r  = ~b- = [wl]. Therefore,  only variant Nos. ! 

and 2 for the values of a and b can be realized. In any case, we have b = 0, i.e., u2 = 0. 
Let f l  - 0; then  wa - 0, ~2 + = h2r + = - ~ -  = -h2~,  - = h[Dw2] and variant Nos. 3 and 4 can be 

realized. This implies tha t  a = - h / ( 1  +h2)[[Dwz]l and b = h2/ ( t  +h2)[Dw2]. In both cases, a 7 ~ 0 if [Dw2] # 0 
and, consequently, ul  ~ 0. Thus, there are no vertical displacements in the absence of vertical loads; in the 
absence of horizontal  loads, horizontal displacements can occur owing to vertical  loads. 

E x a m p l e .  Let f l ( x )  - q ,  f2(x) - c2, and y = 0.5. Then,  we have 

I" + (0; 0.5), 
Wl (:~) / ( q / 2 ) ( - ( 1 - x )  2 + ( I - x ) ) ,  x E ( 0 . 5 ; 1 ) ,  

(c2/48)(2x -- 4x 3 + 3x2), x E (0;0.5), 

w2(x) = (c2/48)(2(1 -- x) 4 -- 4(1 -- x) 3 + 3(1 -- x)2), x E (0.5; 1). 

We find that  

(c2/24)(4x - 6x 2 + 3x), x E (0;0.5), 

Dw2(x) = (c2/24)(-4(1 - x) 3 + 6(1 - x) 2 - 3(1 - x)),  x E (0.5; 1), 
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Thus, 

[Wl] = 0,  [Dw2] ---- C2 99+ ---- c2h  _ c2h ~b + _ 

- 2 " 4 '  - -  2---'4-' ~v = 24"' 

c2h 
Let c2/> 0; then ~+ ~< 0 and ~ -  >/0 and, consequently, a = - 24(1 + h 2) 

c2h c2 h2 
I fc2~<0,  t h e n ~ - ~ < 0 a n d r  a n d b - -  

24(1 + h 2) 24(1 + h2)" 
w e  have 

1 + ( c 1 _ 1 2 ( l + h 2 ) ) x ) ,  2 ( -  clx2 1 21h 

1 ~2~h. -~(1 -- x) ) ,  
2 ( c 1 ( 1 - - x ) 2 + (  0 +  1 2 ( 1 + h 2 ) ]  

C2 C2 

24h'  ~ -  24h 

c2h 2 
and b -  - 

24(1 + h2)" 

z (0; 0.5), 

x ~ (0.5; 1), 

h 2 

It is 'noteworthy that  [ul] -- hic21/(12(1 + h2)). 
O p t i m a l  C o n t r o l  o f  t h e  C u t .  The  found solution (2) of the problem (1) depends on the function w, 

which is constructed for a fixed cut y. We rewrite (2) in the form of a dependence on the function s = (sl,  s2) 
that  is continuous in fl0. For this purpose, we de termine  s E (Y2(Ft0) M H~(f~0)) x (H4(~t0) M H02(fl0)) as a 
solution of the boundary-value problem 

- D 2 s l =  f l ,  D4s2 = f 2  in flo, Sl = s 2  = D s 2  = 0  for x = 0  1. 

The  function s is a function that  describes the displacements of the points on the middle line of the beam 
without a cut. We introduce the function fl E C~(w) :  

/ (x3 - 3 y x 2 ) / 6 '  x E (0; y -  0), 
fl(x) 

((x 1) 3 - 3 ( y - 1 ) ( x - 1 ) 2 ) / 6 ,  x E ( y + 0 ; 1 ) .  

Its properties are as follows: D2fl = x - y ,  D3fl -- 1, D4fl - 0 in fl, [Dfl] = y - 0 . 5 ,  and fl = Dfl = 0 for x = 0 
and 1. For convenience, we introduce the following notation: dl = D s l ( y ) ,  d2 = D2s2(y), d3 = D3s2(y), and 
A = d2 - (y - 0.5) d3. Henceforth, the dependence of these quantities on y is not indicated. 

L e m m a  2. The funct ion w can be represented in the form 

wl = sl - d i D o ,  w2 = s2 - d2a - d3fl. 

P r o o f .  By virtue of the properties of the functions a and fl, we have 

- D 2 w 2  = - D 2 s l  + d i D  3 a = f l ,  D4w2 = D4s2 - d2 D4a - d3D4fl -- f2, 

D w l ( y )  = Ds l (y)  - d l D 2 0 ( y )  = dl - dl = O, 

D2w2(y)  = D2 s2(y) - d2D2 o(y)  - d3D2 fl(y) = d2 - d2 = 0, 

D3w2(y)  = D3 s2(y) - d2D3o(y)  - d3D3 fl(y) = d3 - d3 = O. 

Lemma 2 is proved. 
T h e o r e m  2. The funct ion u E (H2(fl) x H4(~) )  M X that is defined by the formula 

u = s - , ,  r I = ( A D s ,  B o  + d3fl), (4) 
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where 
(dl, d,2), 

(A,B) = 
l + h 2 hdl + A, dl + ~d2 + h y -  d3 , 

l + h 2 hdl - A , - d l  + -~ d2 + h y -  d3 , 

is the solution of the variational inequality (1). 

dl + hA ~> 0, 

1 
dl + ~A < 0, 

1 
d ~ + ~ A ~ > 0 ,  

1 
dl - ~A >t 0, 

dl -- hA >/ 0, 

1 
dl - ~ A < 0 ,  

dl - hA < 0, 

dl + hA < 0, 

(5) 

Proof .  Theorem 2 can be proved using Lemma 2 and formulas (2) and (3). However, we find a proof 
similar to that for Theorem 1. To this end, we check whether the conditions for Lemma 1 are fulfilled: 

-D2ul  = -D2sl  + AD3a = fl  in fl, D4u2 = D4s2 - BD 4a - d3D4fl = f2 in fl, 

[Dul] = -A[D2a] = 0, [D2u2] = -B[D2a] - d3[D213] = 0, 

D3u2(y) = d3 - BD3a(y) - d3D3j3(y) = d3 - d3 = O. 

Inasmuch as Dul(y) = dl - A, D2u2(y) = d2 - B, [ul] = A, and [Du2] = B - (y - 1/2)d3, the four conditions 
of Lemma 1 take the form 

1 (d hB-h(y -  ~)d3) = O, l d - ( A +  B ) )  + (dl +-~ 2 -~ 

: o ,  

1 (A 1 B ) ~ < 0 ,  dl + ~ d 2 -  -4-~ 

A + h B -  h ( y -  ~)d3 ~>0, 

The following four variants are possible: 

1 ( A _  1 B)  ~<0, dl - ~d2 - 

A - hB + h(y - ~)d3 >10. 

I) d l + - ~ d 2 -  A + - ~ B  = 0 ,  d l - - ~ d 2 -  A -  B =0, 

A + hB - h(Y - 2)d3 >~ O, A - hB + h(y - ~)d3 ~>0; 

0 2) d l+~d2-  +~ ~ ~ 

A + h B - h  y -  d3=O, A - h B + h  y -  d3=O; 

l d  (A 1 B )  <0 ,  3) dl + ~ d2 - + . . . .  

A + hB - h(y  - ~)d3 >~ O, A -  hB + h ( y -  ~)d3 = O; 

1 ( 1 )  1 ( 1 )  
4) d l + - ~ d 2 -  A + - ~ B  <0 ,  d l - - ~ d 2 -  A - - ~ B  =0 ,  

A + h B -  h ( y -  ~)d3 = O, A -  hB + h ( y - 1  d ~) 3~>0. 

Solving these equations for A and B, we obtain formula (5). Theorem 2 is proved. 
R e m a r k  5. One can show that [ul] = 0 when dl ~< -(Uh)I~Xl. Moreover, (A,B) = (0,(y- 0.5)d3) 

and, consequently, u = (sl, s2 - dz((y - 0.5)a +/3)). 
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R e m a r k  6. It follows from Remark 5 that u = s when d3 = 0 and dl <~ -(1/h)ld2 I. Obviously, the 
solution u is a continuous function in fl0. 

We regard the coefficients all, d2, d3 A, A, and B as the  functions of y and formulate  the problem of 
optimal control 

inf [ul]. (6) 
0<y<l 

Problem (6) is interpreted as a problem of determining a cut that  ensures the m i n i m u m  opening [3]. Since 
[u l ]=  A, the expression (6) is equivalent to inf A. 

0<y<l 
T h e o r e m  3. Let f E (C(f~0))2; then the eztremum of problem (6) can occur only at the points y E f~o 

for which one of the following statements holds: 

1) fl(Y) = 0,' dl >/hi&l; 
1 

2) dl ~ ~IAI;  

1 ( 1 )  1 
3) fl(Y) = --~ y -  f2(Y), dl < hA, dl >1 --~A; 

1 ( 1 )  1 
4) f l (Y)=-~  y -  f2(Y), dl < - h A ,  dl >>. ~A; 

5) y - - 0 ,  1; 

6) dl = hlAI. 

The infimum is equal to zero in Statement 2, and it is not attained in Statement 5. 
P r o o f .  Since f E (C(f~0)) 2, we have s E C2(fl0) x C4(fl0). It follows from (5) tha t  A is a continuous 

function in ~0 which has the piecewise-continuous derivative and, possibly, discontinuities at the points y where 
the condition dl = hi/k] or the condition dl = (1/h)lA I holds. Consequently, its ex t r ema  can be attained at 
the ends of the segment I20 (Statement  5) or at the discontinuity points of the derivative (Statement  6 and 
dl = (1/h)lA[ in Sta tement  2), or at the points y where dA/dy = 0. We calculate the  derivatives 

d d 
dydl = ~ D s l ( y ) =  D 2sl(y) = - f l (Y) ,  

d ~y(D2s2(y) (y l 3 --dy A -" - - -~)D s2(y)) = - ( Y  - ~)f2(Y). 

Suhsti tut ing these values into formula (5) for the function A, we obtain Sta tements  1-4 of Theorem 3. 
Moreover, it follows from Remark 5 that  A = 0 when d~ <~ (1 /h) lA [. Theorem 3 is proved. 

E x a m p l e .  Let f l (x)  -= 1, f2(x) ~- 1, and h be a small quantity: h 2 < 1/12. Consequently,  s has the 
form 

sl(x) = 0.5(x - x2), s2(x) = ( 2  - 2x 3 + x4)/24. 

We find that  d~ = 0.5 - y, d2 = (1 - 6y + 6y2)/12, d3 = - 0 . 5  + y, and A = - 1 / 6  + y/2 - y2/2. Note that  
A < 0. Further 

h 2 ( 2 h _ _ )  h 1 d l + h A = - - ~ y  + - 1  y - - ~ + ~ ,  (7) 

dl+ A=- y + - 1  y -  

d l - h A = - ~ y  2 -  + 1  y + g + ~ ,  

- + 1 

Vv'e test all the s ta tements  of Theorem 3. 
1. f ,  (y) # O. 
2. Solving the quadrat ic  equations dl + (1/h)A = 0 and dl - ( 1 / h ) A  = 0, we infer that  the discriminant 

1 - 1/(12h 2) < 0 and, consequently, dl + (1/h)A < 0 and dl - (1 /h)A > 0 for any y. Thus,  Statement 2 
cannot hold. 
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3. We have y = 1/2 - h and dx + (1/h)A < 0, and the conditions are not satisfied. 
4. Let y. = 1/2 + h. We always have dl - (1 /h )A > 0. The condition dl + hA < 0 remains to be 

checked for y..  We find that (dl + hA) y* = - (h/2)(h  2 +25/12)  < 0 and (dl - (1 /h)A)  y. = - h / 2  + 1/(24h). 

Hence, 

h 2 1 A h(1 - t2h 2) 
A y . - l + ' h 2 ( d l -  ~ ) y , - 2 4 ( 1 + h 2 )  " 

5. We check whether y ~ 0, 1. For y = 0, we have dl = 1/2, A = - 1 / 6 ,  and da > h]A[; therefore, 

A o =  l /2  > Ay  .. 

For y = 1, we have dl = - 1 / 2 ,  A = - 1 / 6 ,  dl + hA < 0, and dl - (1/h)A > 0; hence 

h2 ( 1 ~_~.s h ( 1 - 3 h )  
A I =  l + h 2  - 7 +  = 6 (1+h2)  > A y . .  

6. We assume that dl + hA = 0. Solving the corresponding quadratic equation (7) for y, we obtain 
.ql = 1/2 - (1 - K)/h  and 1( 2 = 1 - h2/12. Then, we calculate A yt = dl yl = 1/2 - yl = (1 - K)/h  > A ,y." 

Assuming that  dl - hA = 0, we obtain the root y2 = 1 / 2 +  (1 - K)/h.  Since (d] + hA) u~ < 0 and 

(di + (1 /h)A)  y2 < 0, the equality d~ - hA = 0 fails. 

Thus, for f l  = f2 = 1 and 0 < h < 1/(2x/~), at the point y, = 1/2 + h the minimum of (6) 

h(1 - 12h 2) 
inf [Ul]- 

0<y<l 24(1 + h 2) 

is attained for 

h(1 - 12h 2) 24h 4 + 36h 2 - 1 
Da, u2 = s2 - a - hi3. ul = s a  2 4 ( 1 + h  2) 2 4 ( 1 + h  2) 

In this example, we searched for the extremum cut without finding the solution (4). Now we find 
an explicit expression for the coefficient A depending on g E f~0- Solving the quadratic equations (7), we 
obtain dl + hA t> 0 and dl - hA ~> 0 when y E (0, yl). In this interval, we have A = 1 / 2 - y .  For 
y E (Yl, 1), we obtain dl + hA < 0 and dl - ( 1 / h ) A  > 0 and, consequently, A = (h2/(1 +h2))(dl  - (1/h)A) = 
(h/(1 + h2))(y2/2-  (1/2 + h)y + 1/6 + hi2). Thus, we have 

A = h y2 1 
l + h 2  - + h  y + g +  , x E ( y l , 1 ) .  
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Figure 4 shows the plot of the function [ul] = A versus y. Indeed, the condition dA/dy = 0 yields 
y. = 1/2 + h, which is the minimum point of (6). 
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